Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.506
Filtrar
1.
Immunity ; 57(4): 649-673, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599164

RESUMO

Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.


Assuntos
Moléculas com Motivos Associados a Patógenos , Receptores Toll-Like , Receptores Toll-Like/metabolismo , Imunidade Inata/fisiologia , Transdução de Sinais , Regulação da Expressão Gênica
2.
Immunity ; 57(4): 815-831, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599172

RESUMO

The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.


Assuntos
Imunidade Inata , Células Receptoras Sensoriais , Imunidade Inata/fisiologia , Neuroimunomodulação/fisiologia , Homeostase
3.
J Neuroinflammation ; 21(1): 68, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500151

RESUMO

BACKGROUND: Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS: Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS: Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS: Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.


Assuntos
Armadilhas Extracelulares , Degeneração Retiniana , Animais , Camundongos , Macrófagos/metabolismo , Degeneração Retiniana/metabolismo , Imunidade Inata/fisiologia , Inflamação/metabolismo , Camundongos Knockout , Lasers
4.
Acta Physiol (Oxf) ; 240(3): e14091, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288574

RESUMO

Many animals routinely make energetic trade-offs to adjust to environmental demands and these trade-offs often have significant implications for survival. For example, environmental hypoxia is commonly experienced by many organisms and is an energetically challenging condition because reduced oxygen availability constrains aerobic energy production, which can be lethal. Many hypoxia-tolerant species downregulate metabolic demands when oxygen is limited; however, certain physiological functions are obligatory and must be maintained despite the need to conserve energy in hypoxia. Of particular interest is immunity (including both constitutive and induced immune functions) because mounting an immune response is among the most energetically expensive physiological processes but maintaining immune function is critical for survival in most environments. Intriguingly, physiological responses to hypoxia and pathogens share key molecular regulators such as hypoxia-inducible factor-1α, through which hypoxia can directly activate an immune response. This raises an interesting question: do hypoxia-tolerant species mount an immune response during periods of hypoxia-induced hypometabolism? Unfortunately, surprisingly few studies have examined interactions between immunity and hypometabolism in such species. Therefore, in this review, we consider mechanistic interactions between metabolism and immunity, as well as energetic trade-offs between these two systems, in hypoxia-tolerant animals but also in other models of hypometabolism, including neonates and hibernators. Specifically, we explore the hypothesis that such species have blunted immune responses in hypometabolic conditions and/or use alternative immune pathways when in a hypometabolic state. Evidence to date suggests that hypoxia-tolerant animals do maintain immunity in low oxygen conditions, but that the sensitivity of immune responses may be blunted.


Assuntos
Hipóxia , Oxigênio , Animais , Hipóxia/metabolismo , Oxigênio/metabolismo , Imunidade Inata/fisiologia
5.
Biomed Pharmacother ; 169: 115883, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37979373

RESUMO

The stimulator of the interferon gene (STING) signaling pathway acts as a primary defense system against DNA pathogens. Because of the crucial role of STING in type I interferon (IFN) response and innate immunity, extensive research has been conducted to elucidate the roles of various effector molecules involved in STING-mediated signal transduction. However, despite the substantial contribution of microtubules to the immune system, the association between the STING signaling pathway and microtubules remains unclear. In this study, we revealed that the modulation of STING via microtubule-destabilizing agents (MDAs) specifically induced type I IFN responses rather than inflammatory responses in human monocytes. Co-treatment of MDAs with STING agonists induced the elevation of phospho-TANK-binding kinase 1 (TBK1), amplifying the innate immune response. However, during the deficiency of TBK1, the non-canonical signaling pathway through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributed to MDA-induced STING activation in type I IFN response which suggested the versatile regulation of MDA in STING-mediated immunity.


Assuntos
Interferon Tipo I , Monócitos , Humanos , Imunidade Inata/fisiologia , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia
6.
Front Immunol ; 14: 1260705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781382

RESUMO

The imbalance of immune response plays a crucial role in the development of diseases, including glioblastoma. It is essential to comprehend how the innate immune system detects tumors and pathogens. Endosomal and cytoplasmic sensors can identify diverse cancer cell antigens, triggering the production of type I interferon and pro-inflammatory cytokines. This, in turn, stimulates interferon stimulating genes, enhancing the presentation of cancer antigens, and promoting T cell recognition and destruction of cancer cells. While RNA and DNA sensing of tumors and pathogens typically involve different receptors and adapters, their interaction can activate adaptive immune response mechanisms. This review highlights the similarity in RNA and DNA sensing mechanisms in the innate immunity of both tumors and pathogens. The aim is to enhance the anti-tumor innate immune response, identify regions of the tumor that are not responsive to treatment, and explore new targets to improve the response to conventional tumor therapy and immunotherapy.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Transdução de Sinais , Imunidade Inata/fisiologia , Imunidade Adaptativa , DNA , RNA
7.
Front Cell Infect Microbiol ; 13: 1269329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900310

RESUMO

Background: Influenza A virus (IAV) infection poses a persistent global health challenge, necessitating a nuanced grasp of host immune responses for optimal interventions. While the interplay between aging, immunosenescence, and IAV is recognized as key in severe lower respiratory tract infections, the role of specific patient attributes in shaping innate immune reactions and inflammasome activity during IAV infection remains under-investigated. In this study, we utilized an ex vivo infection model of human lung tissues with H3N2 IAV to discern relationships among patient demographics, IAV nucleoprotein (NP) expression, toll-like receptor (TLR) profiles, PD-1/PD-L1 markers, and cytokine production. Methods: Our cohort consisted of thirty adult patients who underwent video-assisted thoracoscopic surgery during 2018-2019. Post-surgical lung tissues were exposed to H3N2 IAV for ex vivo infections, and the ensuing immune responses were profiled using flow cytometry. Results: We observed pronounced IAV activity within lung cells, as indicated by marked NP upregulation in both epithelial cells (P = 0.022) and macrophages (P = 0.003) in the IAV-exposed group relative to controls. Notably, interleukin-2 levels correlated with variations in TLR1 expression on epithelial cells and PD-L1 markers on macrophages. Age emerged as a modulating factor, dampening innate immune reactions, as evidenced by reduced interleukin-2 and interferon-γ concentrations (both adjusted P < 0.05). Intriguingly, a subset of participants with pronounced tumor necrosis factor-alpha post-mock infection (Cluster 1) showed attenuated cytokine responses in contrast to their counterparts in Cluster 2 and Cluster 3 (all adjusted P < 0.05). Individuals in Cluster 2, characterized by a low post-mock infection NP expression in macrophages, exhibited reduced variations in both NP and TLR1-3 expressions on these cells and a decreased variation in interleukin-2 secretion in comparison to their Cluster 3 counterparts, who were identified by their elevated NP macrophage expression (all adjusted P < 0.05). Conclusion: Our work elucidates the multifaceted interplay of patient factors, innate immunity, and inflammasome responses in lung tissues subjected to ex vivo H3N2 IAV exposure, reflecting real-world lower respiratory tract infections. While these findings provide a foundation for tailored therapeutic strategies, supplementary studies are requisite for thorough validation and refinement.


Assuntos
Vírus da Influenza A , Influenza Humana , Adulto , Humanos , Inflamassomos , Interleucina-2 , Antígeno B7-H1 , Vírus da Influenza A Subtipo H3N2 , Receptor 1 Toll-Like , Imunidade Inata/fisiologia , Pulmão/patologia , Citocinas
8.
Adv Drug Deliv Rev ; 203: 115118, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37884127

RESUMO

Inflammation is a first responder against injury and infection and is also critical for the regeneration and repair of tissue after injury. The role of professional immune cells in tissue healing is well characterized. Professional immune cells respond to pathogens with humoral and cytotoxic responses; remove cellular debris through efferocytosis; secrete angiogenic cytokines and growth factors to repair the microvasculature and parenchyma. However, non-immune cells are also capable of responding to damage or pathogens. Non-immune somatic cells express pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The PRRs activation leads to the release of inflammatory cytokines required for tissue defense and repair. Notably, the activation of PRRs also triggers epigenetic changes that promote DNA accessibility and cellular plasticity. Thus, non-immune cells directly respond to the local inflammatory cues and can undergo phenotypic modifications or even cell lineage transitions to facilitate tissue regeneration. This review will focus on the novel role of cell-autonomous inflammatory signaling in mediating cell plasticity, a process which is termed transflammation. We will discuss the regulation of this process by changes in the functions and expression levels of epigenetic modifiers, as well as metabolic and ROS/RNS-mediated epigenetic modulation of DNA accessibility during cell fate transition. We will highlight the recent technological developments in detecting cell plasticity and potential therapeutic applications of transflammation in tissue regeneration.


Assuntos
Plasticidade Celular , Imunidade Inata , Humanos , Imunidade Inata/fisiologia , Transdução de Sinais , Receptores de Reconhecimento de Padrão , Citocinas , DNA
9.
Exp Mol Med ; 55(9): 1845-1857, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37696896

RESUMO

Innate lymphoid cells (ILCs) are innate lymphocytes that do not express antigen-specific receptors and largely reside and self-renew in mucosal tissues. ILCs can be categorized into three groups (ILC1-3) based on the transcription factors that direct their functions and the cytokines they produce. Their signature transcription factors and cytokines closely mirror those of their Th1, Th2, and Th17 cell counterparts. Accumulating studies show that ILCs are involved in not only the pathogenesis of mucosal tissue diseases, especially respiratory diseases, and colitis, but also the resolution of such diseases. Here, we discuss recent advances regarding our understanding of the biology of ILCs in mucosal tissue health and disease. In addition, we describe the current research on the immune checkpoints by which other cells regulate ILC activities: for example, checkpoint molecules are potential new targets for therapies that aim to control ILCs in mucosal diseases. In addition, we review approved and clinically- trialed drugs and drugs in clinical trials that can target ILCs and therefore have therapeutic potential in ILC-mediated diseases. Finally, since ILCs also play important roles in mucosal tissue homeostasis, we explore the hitherto sparse research on cell therapy with regulatory ILCs. This review highlights various therapeutic approaches that could be used to treat ILC-mediated mucosal diseases and areas of research that could benefit from further investigation.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Imunidade Inata/fisiologia , Inflamação , Citocinas , Mucosa , Células Th17 , Fatores de Transcrição , Homeostase
10.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108513

RESUMO

The interleukin (IL)-12 family consists of pro- and anti-inflammatory cytokines that are able to signal the activation of host antiviral immunity while preventing over-reactive immune reactions due to active virus replication and viral clearance. Amongst others, IL-12 and IL-23 are produced and released by innate immune cells such as monocytes and macrophages to signal the proliferation of T cells and release of effector cytokines, which subsequently activate host defence against virus infections. Interestingly, the dualities of IL-27 and -35 are evidently shown in the course of virus infections; they regulate the synthesis of cytokines and antiviral molecules, proliferation of T cells, and viral antigen presentation in order to maximize virus clearance by the host immune system. In terms of anti-inflammatory reactions, IL-27 signals the formation of regulatory T cells (Treg) which in turn secrete IL-35 to control the scale of inflammatory response that takes place during virus infections. Given the multitasking of the IL-12 family in regards to the elimination of virus infections, its potential in antiviral therapy is unequivocally important. Thus, this work aims to delve deeper into the antiviral actions of the IL-12 family and their applications in antiviral therapies.


Assuntos
Interleucina-27 , Viroses , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Interleucina-12 , Citocinas/fisiologia , Viroses/tratamento farmacológico , Viroses/prevenção & controle , Imunidade Inata/fisiologia
11.
Front Immunol ; 14: 1161606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033937

RESUMO

Endometriosis is closely associated with ectopic focal inflammation and immunosuppressive microenvironment. Multiple types of pattern recognition receptors (PRRs) are present in the innate immune system, which are able to detect pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) in both intracellular and external environments. However, the exact role of PRRs in endometriosis and the underlying molecular mechanism are unclear. PRRs are necessary for the innate immune system to identify and destroy invasive foreign infectious agents. Mammals mainly have two types of microbial recognition systems. The first one consists of the membrane-bound receptors, such as toll-like receptors (TLRs), which recognize extracellular microorganisms and activate intracellular signals to stimulate immune responses. The second one consists of the intracellular PRRs, including nod-like receptors (NLRs) and antiviral proteins retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA-5) with helix enzyme domain. In this review, we mainly focus on the key role of PRRs in the pathological processes associated with endometriosis. PRRs recognize PAMPs and can distinguish pathogenic microorganisms from self, triggering receptor ligand reaction followed by the stimulation of host immune response. Activated immune response promotes the transmission of microbial infection signals to the cells. As endometriosis is characterized by dysregulated inflammation and immune response, PRRs may potentially be involved in the activation of endometriosis-associated inflammation and immune disorders. Toll-like receptor 2 (TLR2), toll-like receptor 3 (TLR3), toll-like receptor 4 (TLR4), nod-like receptor family caspase activation and recruitment domain (CARD) domain containing 5 (NLRC5), nod-like receptor family pyrin domain containing 3 (NLRP3), and c-type lectin receptors (CLRs) play essential roles in endometriosis development by regulating immune and inflammatory responses. Absent in melanoma 2 (AIM2)-like receptors (ALRs) and retinoic acid-inducible gene I-like receptors (RLRs) may be involved in the activation of endometriosis-associated immune and inflammation disorders. PRRs, especially TLRs, may serve as potential therapeutic targets for alleviating pain in endometriosis patients. PRRs and their ligands interact with the innate immune system to enhance inflammation in the stromal cells during endometriosis. Thus, targeting PRRs and their new synthetic ligands may provide new therapeutic options for treating endometriosis.


Assuntos
Endometriose , Melanoma , Animais , Feminino , Humanos , Imunidade Inata/fisiologia , Transdução de Sinais , Ligantes , Moléculas com Motivos Associados a Patógenos , Receptores de Reconhecimento de Padrão/metabolismo , Receptores Toll-Like/metabolismo , Inflamação , Proteínas NLR/metabolismo , Proteínas de Transporte/metabolismo , Tretinoína/metabolismo , Mamíferos/metabolismo , Microambiente Tumoral
12.
Front Immunol ; 14: 1118483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776864

RESUMO

Innate lymphoid cells (ILCs) are important subsets of innate immune cells that regulate mucosal immunity. ILCs include natural killer cells, innate lymphoid cells-1 (ILC1s), ILC2s, and ILC3s, which have extremely important roles in the immune system. In this review, we summarize the regulation of mRNA stability mediated through various factors in ILCs (e.g., cytokines, RNA-binding proteins, non-coding RNAs) and their roles in mediating functions in different ILC subsets. In addition, we discuss potential therapeutic targets for diseases such as chronic obstructive pulmonary disease, cancer, and pulmonary fibrosis by regulation of mRNA stability in ILCs, which may provide novel directions for future clinical research.


Assuntos
Citocinas , Imunidade Inata , Imunidade Inata/fisiologia , Citocinas/metabolismo , Células Matadoras Naturais , Estabilidade de RNA
13.
J Endocrinol ; 257(1)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688876

RESUMO

Inflammation is part of the body's innate immune response and is an essential process that not only defends against harmful bacteria and pathogens but also plays a key role in the maintenance and repair of tissues. Under pathological conditions, there is bilateral crosstalk between immune regulation and aberrant metabolism resulting in persistent inflammation in the absence of infection. This phenomenon is referred to as sterile metabolic inflammation (metainflammation) and occurs if the initiating stimulus is not removed or if the resolution process is disrupted. Disruption of this tightly regulated immune response and its failure to resolve as is evident in metabolic disorders is not only associated with disease progression but also leads to immune senescence and should not be neglected in the clinical management of patients. This review gives an overview of the mechanisms underlying chronic metabolic inflammation, the aberrant metabolic activation of innate immune cells (neutrophils, macrophages, mast cells, dendritic cells), and its role in disease progression using obesity-diabetes as a prime example. Addressing the underlying subclinical metabolic inflammation in addition to achieving glucose control may contribute significantly towards therapeutic interventions aimed at preventing the onset of co-morbidities in diabetic patients.


Assuntos
Imunidade Inata , Inflamação , Humanos , Inflamação/metabolismo , Imunidade Inata/fisiologia , Macrófagos/metabolismo , Progressão da Doença
14.
Aging (Albany NY) ; 15(1): 21-36, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36622277

RESUMO

Dietary restriction (DR) is a highly effective and reproducible intervention that prolongs longevity in many organisms. The molecular mechanism of action of DR is tightly connected with the immune system; however, the detailed mechanisms and effective downstream factors of immunity that mediate the beneficial effects of DR on aging remain unknown. Here, to investigate the immune signaling that mediates DR effects, we used Caenorhabditis elegans, which has been widely used in research, to understand the underlying molecular mechanisms of aging and immunity. We found that the F-box gene, fbxc-58, a regulator of the innate immune response, is a novel mediator of DR effects on extending the health span of C. elegans. fbxc-58 is upregulated by DR and is necessary for DR-induced lifespan extension and physical health improvement in C. elegans. Furthermore, through DR, fbxc-58 prevents disintegration of the mitochondrial network in body wall muscle during aging. We found that fbxc-58 is a downstream target of the ZIP-2 and PHA-4 transcription factors, the well-known DR mediator, and fbxc-58 extends longevity in DR through an S6 kinase-dependent pathway. We propose that the novel DR effector, fbxc-58, could provide a new mechanistic understanding of the effects of DR on healthy aging and elucidate the signaling mechanisms that link immunity and DR effects with aging.


Assuntos
Proteínas de Caenorhabditis elegans , Envelhecimento Saudável , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restrição Calórica , Imunidade Inata/fisiologia
15.
Sci China Life Sci ; 66(2): 283-297, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36115893

RESUMO

B-cell lymphoma 10 (Bcl10) is a scaffolding protein that functions as an upstream regulator of NF-κB signaling by forming a complex with Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) and CARD-coiled coil protein family. This study showed that Bcl10 was involved in type I interferon (IFN) expression in response to DNA virus infection and that Bcl10-deficient mice were more susceptible to Herpes simplex virus 1 (HSV-1) infection than control mice. Mechanistically, DNA virus infection can trigger Bcl10 recruitment to the STING-TBK1 complex, leading to Bcl10 phosphorylation by TBK1. The phosphorylated Bcl10 undergoes droplet-like condensation and forms oligomers, which induce TBK1 phosphorylation and translocation to the perinuclear region. The activated TBK1 phosphorylates IRF3, which induces the expression of type I IFNs. This study elucidates that Bcl10 induces an innate immune response by undergoing droplet-like condensation and participating in signalosome formation downstream of the cGAS-STING pathway.


Assuntos
Proteína 10 de Linfoma CCL de Células B , Imunidade Inata , Animais , Camundongos , Proteína 10 de Linfoma CCL de Células B/genética , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Imunidade Inata/fisiologia , NF-kappa B/metabolismo , Fosforilação
16.
Shock ; 59(2): 125-134, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383390

RESUMO

ABSTRACT: Sepsis, a dysregulated host immune response to infection, is one of the leading causes of neonatal mortality worldwide. Improved understanding of the perinatal immune system is critical to improve therapies to both term and preterm neonates at increased risk of sepsis. Our narrative outlines the known and unknown aspects of the human immune system through both the immune tolerant in utero period and the rapidly changing antigen-rich period after birth. We will highlight the key differences in innate and adaptive immunity noted through these developmental stages and how the unique immune phenotype in early life contributes to the elevated risk of overwhelming infection and dysregulated immune responses to infection upon exposure to external antigens shortly after birth. Given an initial dependence on neonatal innate immune host responses, we will discuss the concept of innate immune memory, or "trained immunity," and describe several potential immune modulators, which show promise in altering the dysregulated immune response in newborns and improving resilience to sepsis.


Assuntos
Sepse Neonatal , Sepse , Gravidez , Feminino , Recém-Nascido , Humanos , Imunidade Treinada , Imunidade Adaptativa , Imunidade Inata/fisiologia
17.
Immunity ; 55(12): 2236-2254, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36351425

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease, with characteristic extracellular amyloid-ß (Aß) deposition and intracellular accumulation of hyperphosphorylated, aggregated tau. Several key regulators of innate immune pathways are genetic risk factors for AD. While these genetic risk factors as well as in vivo data point to key roles for microglia, emerging evidence also points to a role of the adaptive immune response in disease pathogenesis. We review the roles of innate and adaptive immunity, their niches, their communication, and their contributions to AD development and progression. We also summarize the cellular compositions and physiological functions of immune cells in the parenchyma, together with those in the brain border structures that form a dynamic disease-related immune niche. We propose that both innate and adaptive immune responses in brain parenchyma and border structures could serve as important therapeutic targets for treating both the pre-symptomatic and the symptomatic stages of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/genética , Doenças Neurodegenerativas/patologia , Imunidade Inata/fisiologia , Peptídeos beta-Amiloides/metabolismo , Imunidade Adaptativa , Microglia
18.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430676

RESUMO

Research of the last decade has remarkably increased our understanding of innate lymphoid cells (ILCs). ILCs, in analogy to T helper (Th) cells and their cytokine and transcription factor profile, are categorized into three distinct populations: ILC1s express the transcription factor T-bet and secrete IFNγ, ILC2s depend on the expression of GATA-3 and release IL-5 and IL-13, and ILC3s express RORγt and secrete IL-17 and IL-22. Noteworthy, ILCs maintain a level of plasticity, depending on exposed cytokines and environmental stimuli. Furthermore, ILCs are tissue resident cells primarily localized at common entry points for pathogens such as the gut-associated lymphoid tissue (GALT). They have the unique capacity to initiate rapid responses against pathogens, provoked by changes of the cytokine profile of the respective tissue. Moreover, they regulate tissue inflammation and homeostasis. In case of intracellular pathogens entering the mucosal tissue, ILC1s respond by secreting cytokines (e.g., IFNγ) to limit the pathogen spread. Upon infection with helminths, intestinal epithelial cells produce alarmins (e.g., IL-25) and activate ILC2s to secrete IL-13, which induces differentiation of intestinal stem cells into tuft and goblet cells, important for parasite expulsion. Additionally, during bacterial infection ILC3-derived IL-22 is required for bacterial clearance by regulating antimicrobial gene expression in epithelial cells. Thus, ILCs can limit infectious diseases via secretion of inflammatory mediators and interaction with other cell types. In this review, we will address the role of ILCs during enteric infectious diseases.


Assuntos
Gastroenteropatias , Imunidade Inata , Linfócitos , Humanos , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Citocinas/metabolismo , Imunidade Inata/fisiologia , Interleucina-13/metabolismo , Linfócitos/metabolismo , Gastroenteropatias/imunologia , Gastroenteropatias/microbiologia
19.
Front Immunol ; 13: 1014774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275689

RESUMO

Innate lymphoid cells (ILCs) are a critical element of the innate immune system and are potent producers of pro-inflammatory cytokines. Recently, however, the production of the anti-inflammatory cytokine IL-10 has been observed in all ILC subtypes (ILC1s, ILC2s, and ILC3s) suggesting their ability to adopt a regulatory phenotype that serves to maintain lung and gut homeostasis. Other studies advocate a potential therapeutic role of these IL-10-expressing ILCs in allergic diseases such as asthma, colitis, and pancreatic islet allograft rejection. Herein, we review IL-10 producing ILCs, discussing their development, function, regulation, and immunotherapeutic potential through suppressing harmful inflammatory responses. Furthermore, we address inconsistencies in the literature regarding these regulatory IL-10 producing ILCs, as well as directions for future research.


Assuntos
Asma , Imunidade Inata , Humanos , Imunidade Inata/fisiologia , Linfócitos , Interleucina-10 , Citocinas
20.
Nucleic Acids Res ; 50(19): 11093-11108, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36243958

RESUMO

Double-stranded DNA (dsDNA) is recognized as a danger signal by cyclic GMP-AMP synthase (cGAS), which triggers innate immune responses. cGAS activity must be properly regulated to maintain immune homeostasis. However, the mechanism by which cGAS activation is controlled remains to be better understood. In this study, we identified USP15 as a cGAS-interacting partner. USP15 promoted DNA-induced cGAS activation and downstream innate immune responses through a positive feedback mechanism. Specifically, USP15 deubiquitylated cGAS and promoted its activation. In the absence of DNA, USP15 drove cGAS dimerization and liquid condensation through the USP15 intrinsic disordered region (IDR), which prepared cGAS for a rapid response to DNA. Upon DNA stimulation, USP15 was induced to express and boost cGAS activation, functioning as an efficient amplifier in innate immune signal transduction. In summary, the positive role played by USP15-mediated cGAS activation may be a novel regulatory mechanism in the fine-tuning of innate immunity.


Assuntos
Imunidade Inata , Nucleotidiltransferases , Nucleotidiltransferases/metabolismo , Imunidade Inata/fisiologia , DNA/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA